Prime Decomposition Theorem for Arbitrary Semigroups: General Holonomy Decomposition and Synthesis Theorem

نویسندگان

  • Karsten HENCKELL
  • Susan LAZARUS
  • John RHODES
چکیده

Herein we generalize the holonomy theorem for finite semigroups (see [7]) to arbitrary semigroups, S, by embedding s^ into an infinite Zeiger wreath product, which is then expanded to an infinite iterative matrix semigroup. If S is not finite-J-above (where finite-J-above means every element has only a finite number of divisors), then S is replaced by g3, the triple Schtitzenberger product, which is finite-J-above. This paper provides global proofs inspired by previous ‘local’ proofs in the finite case. See [2,3,.5,7,8,10-131, for further background. See [8] for applications to finite semigroups. See [2,3] for further developments in the synthesis theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Examples of non-quasicommutative semigroups decomposed into unions of groups

Decomposability of an algebraic structure into the union of its sub-structures goes back to G. Scorza's Theorem of 1926 for groups. An analogue of this theorem for rings has been recently studied by A. Lucchini in 2012. On the study of this problem for non-group semigroups, the first attempt is due to Clifford's work of 1961 for the regular semigroups. Since then, N.P. Mukherjee in 1972 studied...

متن کامل

An Effective Lower Bound for Group Complexity of Finite Semigroups and Automata

The question of computing the group complexity of finite semigroups and automata was first posed in K. Krohn and J. Rhodes, Complexity of finite semigroups, Annals of Mathematics (2) 88 (1968), 128–160, motivated by the Prime Decomposition Theorem of K. Krohn and J. Rhodes, Algebraic theory of machines, I: Prime decomposition theorem for finite semigroups and machines, Transactions of the Ameri...

متن کامل

Algebraic Theory of Machines. I. Prime Decomposition Theorem for Finite Semigroups and Machines

Introduction. In the following all semigroups are of finite order. One semigroup Si is said to divide another semigroup S2, written Si|S2, if Si is a homomorphic image of a subsemigroup of S2. The semidirect product of S2 by Si, with connecting homomorphism Y, is written S2 Xy Si. See Definition 1.6. A semigroup S is called irreducible if for all finite semigroups S2 and Si and all connecting h...

متن کامل

A Schottky Decomposition Theorem for Complex Projective Structures

Let S be a closed orientable surface of genus at least two, and let C be an arbitrary (complex) projective structure on S. We show that there is a decomposition of S into pairs of pants and cylinders such that the restriction of C to each component has an injective developing map and a discrete and faithful holonomy representation. This decomposition implies that every projective structure can ...

متن کامل

Exploration of the Space of Finite State Automata Using the Holonomy Decomposition∗

Algebraic theory of finite automata (Krohn-Rhodes Theory) is an important part of theoretical computer science although it has not achieved its full impact so far. The main decomposition theorem was proved in the 60’s [6] and further improved in the 70’s [5] but up until now there had never been a computational implementation. We implemented two different decompositions computationally and comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001